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The objective of the present work is to test experimentally the two-phase modelling
approach which is widely used in fluidization. A difficulty of this way of modelling
fluidized beds is the use of empirical relations in order to close the system of equations
describing the fluidized bed as a two-phase continuum, especially concerning the
description of the solid phase. We performed an experimental investigation of the
primary wavy instability of liquid-fluidized beds. Experiments demonstrate that the
wave amplitude saturates up the bed and we were able to measure the precise shape
of this voidage wave. We then related this shape to the unknown solid phase viscosity
and pressure functions of a simple two-phase model with a Newtonian stress-tensor for
the solid phase. We found the scaling laws and the particle concentration dependence
for these two quantities. It appears that this simplest model is quite satisfactory to
describe the one-dimensional voidage waves in the limited range of parameters that we
have studied. In our experimental conditions, the drag on the particles nearly balances
their weight corrected for buoyancy, the small imbalance being mostly accounted for
by solid phase viscous stress with a much smaller contribution from the solid phase
pressure.

1. Introduction
Fluidized beds are widely used in many industrial fields and display a wide range

of intriguing phenomena. To fluidize a bed of particles, a fluid is pumped upwards
at the bottom of the bed through a porous plate. At low flow rates (below minimum
fluidization), the bed is packed. As the flow is increased, the drag force on the
particles increases until it is sufficient to balance their weight corrected for buoyancy.
The particles then become free to move and the bed is said to be fluidized, and, indeed,
the bed can be stirred and poured as if it were a fluid. Uniform and homogeneous
fluidized beds are rarely realized in practice. Fluidized beds usually present a variety
of complex flow regimes above minimum fluidization. On one hand, gas-fluidized beds
are very unstable and rapidly attain a bubbling regime, see Davidson & Harrison
(1971). On the other hand, liquid-fluidized beds exhibit a voidage-wave instability. The
instability was shown to remain one-dimensional in narrow beds (Anderson & Jackson
1969; Ham et al. 1990; Nicolas et al. 1996) whereas in wider beds, transverse structures
can develop (El-Kaissy & Homsy 1976; Didwania & Homsy 1981). Batchelor (1991)
conjectured that bubbles evolve from this secondary instability.

The theoretical description of fluidized systems is an important challenge for
physicists and engineers. Noting that the velocity of the particles is on average
quite different from the velocity of the fluid, we rapidly conclude that a minimal
description of a fluidized bed must be as two coexisting continua, a fluid phase
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and a solid phase. Such a two-phase continuum description has been proposed by
many before, for a review see Jackson (2001). Attempts have been made to derive
two-phase governing equations by averaging separately the equations of motion for
the fluid and the particles, for instance Anderson & Jackson (1967). These averaging
procedures generate averaged quantities more numerous than the available equations
and consequently there is a problem of closure, in particular for the drag force
between the phases, for added mass effects, and for the stresses in the two phases.
Under practical conditions, where the Reynolds number for the flow past the particle
is 10 or more, we know theoretically that the stress at a point must depend on
the strain rate at nearby points at previous times, and so a simple expression for
the closures cannot exist; exactly the same conceptual problem occurs in turbulence
where the eddy-viscosity theoretically cannot exist.

Thus, at best, we are searching for empirical expressions for the closures which
are satisfactory within the narrow range of operating conditions of interest. For the
drag force between the two phases we use the Richardson–Zaki law, which gives a
drag proportional to the difference between the instantaneous values of the velocities
of the two phases. The coefficient of proportionality depends on the concentration
of the particles. The Richardson–Zaki law has been found over the years to work
well. When the particles accelerate relative to the fluid, the fluid exerts a force on the
particles proportional to the relative acceleration with a coefficient called the added
mass. This added mass has not been studied in concentrated beds. Fortunately, it
plays a minor role. We therefore will eventually adopt the value for an isolated sphere
equal to half the displaced mass of fluid. The biggest closure problem comes with
expressions for the stresses in the fluid and solid phases. We assume like many before
that both phases behave as Newtonian viscous fluids. It is clear that the bed as a
whole does have a fluid-like behaviour, but it is certainly not clear that both the fluid
and solid phases are purely viscous; perhaps the solid phase should have an elastic
part. The linearity of the Newtonian stresses in the strain rate is also an assumption
whose only justification is that it is the simplest possible alternative.

We note that there are more complicated models introducing a granular temperature
and thus a new equation for the ‘thermal’ energy conservation, for a review see Jackson
(2001). It results in a great complexity when trying to derive exact closure relations
linking unknown terms to the temperature and to the particle concentration and we
think that it is very unlikely that this kind of model could be tested experimentally.

Despite the wide use of models using empirical closure relations, there is a lack of
knowledge about the viscosity and the pressure appearing in the Newtonian stress
tensor of the solid phase. Several speculative expressions have been proposed since
Murray (1965) for the solid viscosity µs and the solid pressure ps, some of them
being presented in table 1. Most of these authors chose monotonic functions of the
particle volume fraction φ which diverge when the particle volume fraction reaches
the random close packing volume fraction φcp.

Rough estimates for the unknown solid viscosity and pressure were obtained
by studying the voidage-wave instability occurring in narrow liquid-fluidized beds
(Anderson & Jackson 1969; El-Kaissy & Homsy 1976). The voidage disturbances
were found to grow exponentially up the bed and eventually to saturate at their finite
amplitude. By measuring their propagation properties and the general growth and
comparing with linear stability theory, these authors were able to estimate parameters
appearing in the assumed constitutive equations. However, these measurements did
not give any insight on the shape of the functions µs(φ) and ps(φ) as they only
provided values for a few particle concentrations φ.
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Authors ps(φ) µs(φ)

Murray (1965) 0 µf
Mφ

φcp − φ
Fanucci et al. (1981) Not given M exp

[
φcp − φ

(1− φcp)(1− φ)

]
Needham & Merkin (1983) Pφ Constant

Harris & Crighton (1994) Pφ/(φcp − φ) Constant

Anderson et al. (1995) Pφ3 exp

(
rφ

φcp − φ
)

Mφ

1− (φ/φcp)1/3

Glasser et al. (1996)


C1φ

3 exp

(
rφ

φcp − φ
)

C2φ

C2

φ

(φcp − φ)2

Mφ

1− (φ/φcp)1/3

Table 1. Various expressions for ps and µs proposed in the literature.

The two-phase model has also been tested as a whole, by simulating the fully
nonlinear two-phase equations with different closure relations for the solid viscosity
and the solid pressure (Anderson et al. 1995; Glasser, Kevredikis & Sundaresan 1996,
1997). Glasser et al. (1997) have notably shown that two-dimensional bubble-like
solutions were stationary solutions of the two-phase equations in both liquid and
gas cases. However, these structures could be reached only in this latter case, either
by a two-dimensional destabilization of the uniform bed or by a two-dimensional
destabilization of the fully developed one-dimensional plane wave, these mechanisms
failing to produce bubbles in the liquid-fluidized case. The two-phase equations, along
with these ad hoc closure relations seem to succeed in reproducing some important
experimental facts. It should be noticed that the added mass term was omitted in
their numerical simulations, even in the liquid-fluidized bed case.

The approach we adopt in this paper is different. We study experimentally the
voidage-wave instability and show that the voidage disturbance, after its initial
growth, reaches a nonlinearly saturated shape which we are able to measure with
accuracy. We then relate this saturated shape to the unknown parameters of the two-
phase model and are thus able to recover the viscosity and the pressure of the solid
phase. Hence, we find the form and the scaling laws for the viscosity and the pressure.
Our experiments can thus be viewed as a restricted test of the two-phase model of a
fluidized bed.

This paper is organized as follows. First, we present the measurements of the
accurate shape of the voidage wave propagating in a narrow liquid-fluidized bed. This
is an important result since this wave shape has never been measured experimentally
before, but was rather obtained by numerical simulations. Our experimental set-up
is presented in § 2. It depends on the fact that such an instability is known to be
convective (Nicolas et al. 1994, 1996). The influence of the experimental parameters
on the nonlinearly saturated wave is presented in § 3. Then, in § 4, we show how to
relate the saturated wave-shape to the unknown solid viscosity and solid pressure
functions appearing in the two-phase equations. The results concerning the solid
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Set ds (µm) ρs (g cm−3)

A 1220± 60 4.08± 0.01
B 928± 100 4.08± 0.01
C 685± 30 4.08± 0.01
D 1200± 90 2.48± 0.01
E 771± 40 2.55± 0.01

Table 2. Particle characteristics.

Fluid A (% of glycerol) µf (cP) ρf (g cm−3)

a 0 0.9± 0.02 0.997± 0.002
b 35 3± 0.2 1.1± 0.03

Table 3. Fluid characteristics.

viscosity µs are presented in § 5 and those concerning the solid pressure ps in § 6.
Section 7 contains our discussion of the results.

2. Experimental techniques
2.1. Particles and fluids

Experiments were performed with different sets of glass beads having different den-
sities ρs and diameters ds. Characteristics of the particles are presented in table 2.
Sets A, B and C were supplied by Cataphote (Jackson, MS, USA), set E by J.-C.
Borgotti of Laboratoire Central des Ponts et Chaussées (Paris, France), and set D by
Matrasur (Palaiseau, France). The beads were supplied presieved and were further
carefully resieved between two close meshes. The bead diameter distribution was
obtained from measurements of 300 beads with a charged coupled device camera and
a digital imaging system composed of an acquisition board and of the public domain
image processing NIH Image†. The distributions were all found to be approximately
Gaussian with mean diameter ds. The standard deviation was taken as the experi-
mental error in the diameter. The particle density ρs was determined by measuring
the volume variation when a known mass of particles was introduced into a known
volume of water in a graduated vessel.

In order to examine the influence of the viscosity of the fluid, we used two fluids:
pure water and a mixture of glycerine and water. The temperature of the fluids was
maintained at 27±1 ◦C by using a thermostatically controlled bath as a fluid reservoir
in the fluid circulating loop of the fluidized bed (see § 2.2). Characteristics of the two
fluids are displayed in table 3.

2.2. Apparatus

The fluidized bed apparatus, which is sketched in figure 1, was derived from that
of Nicolas et al. (1996), itself derived from that of Ham et al. (1990). The fluidized
bed was a straight and vertical cylindrical glass tube of height 1.8 m mounted on
a rigid support structure. Different tubes having different inner diameters D were
used in the experiments, as indicated in table 4. The bed to particle diameter ratio,

† Public domain NIH Image program, developed at the US National Institute of Health and
available from the Internet by anonymous ftp from zippy.nimh.nih.gov.
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Figure 1. Sketch of the fluidized bed apparatus.

Tube D (cm)

1 3.0± 0.02
2 1.5± 0.02
3 0.7± 0.02

Table 4. Tube characteristics.

D/ds, was chosen to be smaller than 25 in order to ensure that the instability remains
one-dimensional and larger than 10 in order to avoid the particle arching effect
within the tube (see § 3.1). This ratio falls into the ratio range used in the previous
experiments of Ham et al. (1990) for which wall effects were considered negligible
while maintaining a good resolution of the light attenuation technique (see § 2.3).
The different tubes were inspected to ensure that their cross-sections were round and
constant along their lengths.

Fluid was circulated through the bed by a piston metering pump (Fluid Metering
Inc. model QD, 1425 r.p.m), used to produce flow rates up to 7 dm3 min−1. Soft tubing
was placed upstream of the bed in order to isolate the bed from pump vibrations.
Soft tubing also connected the overflow at the top of the bed and carried it to the
reservoir. It provided an easy way of diverting the entire overflow into a beaker for
gravimetric flow measurements.

The suspension was held by a piston composed of a mesh with holes smaller than
the size of the beads. This piston could be either kept immobile or moved with a
sinusoidal motion at a given frequency by an eccentric disk driven by a d.c. motor
(see the blow-up in figure 1). The uniform distribution of the flow was provided by
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Frequency Relative power Relative amplitude

f0 1 1
2f0 0.025 0.153
3f0 0.018 0.136
4f0 0.002 0.048

Table 5. Power spectrum of the displacement signal of the piston. The frequency f0 is the forcing
frequency.

a fixed porous plate located before the piston. The pores in the porous plate were
small enough to ensure a large pressure drop. This piston-type distributor was used to
study the response of the fluidized bed to a local harmonic forcing. When the piston
moved upwards, it created a local compression of the fluidized particles, and when
it moved downwards, it created a local deficit of particles. This local perturbation
was then convected by the flow and spatially amplified along the fluidized bed (if
the mode was unstable), see Nicolas et al. (1996). Since the piston was in fact a thin
mesh, it did not induce significant variation of the flow rate.

The amplitude of the displacement of the piston had to be carefully selected.
It had to be larger than the amplitude of the ‘natural’ noise which was always
present at the distributor. On the other hand, if the amplitude (or the mean particle
concentration) was too large, the motion of the piston created contacts between
particles and therefore local close packing just above the piston, in particular for
small bed to particle diameter ratio D/ds. In the latter case, the beads may stay
jammed in the tube owing to arching effects, which stops the propagation of the
perturbation. Typically, in the present experiments, the amplitude of the piston was
chosen to be ≈ 1.5ds. The motion of the piston was measured with the use of a linear
displacement gauge (Novotechnic model T25) and an electronic circuit provided a
reference phase signal used to trigger the concentration measurements (see § 2.4). It
should be mentioned that, because of the flexibility of the shaft holding the piston
and the small size of the eccentric gear, the motion of the piston was not perfectly
sinusoidal but presented few harmonics, as indicated in table 5.

2.3. Particle volume fraction measurements

The mean particle volume fraction, φ0, was estimated by measuring the fluidized bed
mean height, h0. In a steady state regime of fluidization, the front between the fluidized
particles and the clear fluid at the top of the bed was observed to exhibit fluctuations
(due to the wave instability) around a fixed mean height. This mean height of the
suspension, h0, was measured with a viewfinder mounted on a horizontal optical rail
which could slide along the bed on two vertical rails. The position of the optical
rail and therefore of the view-finder was determined with the use of a ruler attached
along the bed with an accuracy of 0.5 mm. The mean volume fraction was then given
by φ0 = 4Ms/(πD

2ρsh0) where Ms is the weight of the particles. The mean particle
volume fraction, φ0, was measured before and after any instability wave measurement.
The relative error in φ0 is ≈ 2%.

In order to determine the local particle volume fraction, φ(x, t), at time t and
position x from the mean position of the piston-type distributor, measurements of
the attenuation of light through the suspension were performed. The basic principle
behind this light attenuation technique is that the amount of light attenuation by
particles in a suspension is a function of the particle concentration (see for instance
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Figure 2. Calibration of the averaged signal, 〈U〉, with the mean volume fraction, φ0 at �,

x = 5 cm; �, 10 cm; ×, 15 cm. The dotted curve corresponds to the best power law correlation, φξ0
with ξ = −1.35 for combination 6.

Combination Particles Fluid Tube ξ(±0.1)

1 A a 1 −2.30
2 A b 1 −2.15
3 D a 1 −3.35
4 B a 2 −1.80
5 B b 2 −1.60
6 C a 2 −1.35
7 C a 3 −1.50
8 E a 2 −1.60

Table 6. Value of ξ for all different combinations of particles, fluid and tube used
in the present work.

the use of this technique in the case of fluidized beds by Anderson & Jackson 1969
and El-Kaissy & Homsy 1976, and in the case of sedimenting suspensions by Davis
& Birdsell 1988). The light source was a 25 mW He-Ne stabilized laser (Spectra
Physics 107B). The laser beam was incident at right angles on the bed glass tube and
illuminated the tube with a 4 mm diameter round spot using a diverging lens.

A linear photodiode (Hewlett–Packard model 508-4220 PIN) was used to detect the
transmitted light through the suspension. The photodiode was aligned opposite the
laser beam along the same bed diameter. The lens and the photodiode were mounted
on the optical rail which could slide along the bed. The motion of the rail was driven
by a stepping motor which itself was monitored by a personal computer. The smallest
available displacement corresponding to one step was 0.3 mm. The intensity signal
from the photodiode was processed by a converter/amplifier electronic circuit which
converted the micro-ampere current signal from the photodiode to a voltage signal,
U, for further processing.

The voltage signal was averaged over 160 s, a time much larger than the wave
instability period. The averaged value 〈U〉 was measured at a given position x as
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a function of the mean particle volume fraction, φ0. The resulting plot which is
presented in figure 2 is a monotonically decreasing function which was used to
calibrate the light attenuation through the suspension. The best fit was found in each
case to be a power law correlation: 〈U〉 = U0φ

ξ
0 with ξ depending on the beads, the

fluid, and also the tube, see table 6.
However, owing to a small misalignment of the glass tube (and probably a small

variation of the tube thickness), the light transmission through the tube without
particles was not observed to be the same at different location along the tube, i.e. U0

varied with x. Therefore, 〈U〉 was normalized by U0 at each position x and 〈U〉/U0

did not vary along the tube, as shown in figure 2. For each position x, the local
volume fraction was then given by

φ(x, t) =
φ0

〈U(x, t)〉1/ξU(x, t)1/ξ, (2.1)

where the brackets note a temporal average over several periods.

2.4. Wave instability measurements

In order to obtain quantitative measurements of the wave instability, the recording
of the signal U over a few wave periods was synchronized with the piston-type
distributor. A digital signal analyser (Hewlett–Packard model 3562A) in a triggering
mode was used to record the signal U at a given position x along the bed. In this
triggering mode, time recording started when the forcing phase was zero (i.e. when
the piston was in its average position and moving upwards). The signal analyser was
controlled by the personal computer through an IEEE board. Each time recording
was transferred to the personal computer and converted to concentration values
using the calibration, see equation (2.1). The resulting concentration signal was then
averaged over typically 30 or 100 recordings depending upon the desired accuracy
of the measurements (30 for the study of the wave evolution, see § 3.2, and 100 for
the study of the saturated wave, see § 3.3). This synchronized averaging technique
provided the waveform of the mode which is correlated with the frequency of the
forcing.

2.5. Wave velocity measurements

The wave propagation can also be visualized by backlighting the column with a
neon light. A CCD camera captures a one-dimensional image of the tube and the
digital imaging system is able to construct spatiotemporal plots from successive
one-dimensional images. On such plots, see figure 3, clear lines correspond to low
concentration regions of the fluidized bed moving upwards and the measurement of
their constant slope gives the wave velocity c.

2.6. Experimental procedure

Once a weighted amount of particles was introduced into the bed, fluid was circulated
through the bed at a flow rate sufficient to expand the bed to the top of the tube.
The bed was operated in this expanded state for about 20 min to remove any small
trapped air bubbles or impurities.

After the start-up procedure, the expansion behaviour of the bed was measured.
The flow rate of the bed was lowered in different steps. At each step, the bed was
allowed to come to a steady state with a constant height of the bed. The flow rate was
then measured gravimetrically and the bed height measured. The flow rate examined
ranged between the initial expanded state and a completely packed bed.
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Figure 3. Spatiotemporal plot obtained with combination 2 and φ0 = 0.540. The wave is forced at
1 Hz. Only 15 cm of the bed, shot during 8 s, are shown.

Wave instability measurements were performed at a fixed flow rate (or particle
volume fraction) and a given frequency of forcing. The wave mode correlated with
the frequency of the forcing was measured along the bed, the use of the personal
computer for controlling the signal acquisition and the motion of the optical rail
ensuring reproducibility of the measurements.

3. Spatial evolution of the voidage wave instability
3.1. Fluidized bed expansion

As previously noted in the fluidized bed literature, see Didwania & Homsy (1981)
and Ham et al. (1990) for instance, four different regimes were observed during the
expansion of the bed. Typical expansion data showing superficial velocities q versus
mean particle volume fractions φ0 are presented in figure 4. The expansion curve
can be fitted well by the empirical Richardson–Zaki relation q = vt(1 − φ0)

n. The
exponent n and terminal velocity vt were measured by using this fit for the mean
volume fraction range corresponding to the waves studied in § 3.3. The expansion
characteristics are given in table 7 for all the different combinations of particles, fluid,
and tube used in the present work.

Below the minimum fluidization velocity qmf , the bed remained packed at the
bottom of the tube, with a mean particle volume fraction φmf . This volume fraction
corresponded to a random loose packing of the beads. With a gentle tapping of the
tube, a random close packing was obtained, with a mean particle concentration φcp.
This maximum value was below the classical value of a random close packing of
monodisperse spheres (≈ 0.64) because the suspension is constrained by the small
bed to particle size ratio.

For a fluid velocity slightly above qmf , the top of the packing started to move, but the
bottom of the suspension stayed still. The liquid then crossed the suspension of packed
beads through preferential paths. This regime was called ‘worming’ fluidization, see
Ham et al. (1990). The value of qmf was taken to be the velocity at which the bed



380 P. Duru, M. Nicolas, E. J. Hinch and É. Guazzelli
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Figure 4. Expansion curve of the fluidized bed: (a) combination 7, D/ds = 10; (b) combination 6,
D/ds = 22. The solid line corresponds to the Richardson–Zaki law.

Combination Particles Fluid Tube D/ds vt (cm s−1) n φcp φmf φc

1 A a 1 25 21.55± 0.35 2.43± 0.03 0.630 0.608 0.578
2 A b 1 25 20.4± 0.25 3.18± 0.02 0.627 0.610 0.560
3 D a 1 25 14.4± 0.20 2.58± 0.03 0.630 0.588 0.555
4 B a 2 16 17.7± 0.30 2.84± 0.02 0.615 0.590 0.545
5 B b 2 16 17.4± 0.40 3.65± 0.10 0.600 0.565 0.520
6 C a 2 25 16.4± 0.40 3.25± 0.04 0.612 0.580 0.555
7 C a 3 10 15.7± 0.20 3.18± 0.02 0.613 0.589 0.543
8 E a 2 19 12.0± 0.20 3.30± 0.02 0.614 0.575 0.544

Table 7. Fluidized bed expansion characteristics. The experimental uncertainty on φcp, φmf
and φc is ±0.005.

begins to expand and was measured by identifying the break in the expansion curve,
see figure 4.

As the flow rate was increased, the whole suspension was fluidized and started
to exhibit the primary voidage wave instability where a concentration plane wave
propagated upwards along the bed at a flow rate qc corresponding to a volume
fraction φc. For the type of particles and fluids used in the present experiments, no
stable regime of fluidization such as observed by Ham et al. (1990) was present.

For an even larger flow rate, the wavy instability no longer existed and the particles
exhibited large and random displacements. This regime has been called the turbulent
regime.

It should be stressed that instability threshold and range are strongly dependent
upon aspect ratio D/ds. When D/ds is small (∼ 10), as in combination 7 (see figure 4a),
confinement effects tend to stabilize the plane wave. In this case, the φ0-range for
which the waves are observed is much larger than in the cases of larger values of D/ds
(for instance for the case D/ds ∼ 22 shown in figure 4b). Also, for D/ds ∼ 10, if φ0

was too large, the upward motion of the piston created close packing in the bottom of
the dense suspension and the beads can become jammed in the tube owing to arching
effects, which stops the propagation of the perturbation, as mentioned earlier. The
forcing method was no longer efficient and the waves cannot be measured. Therefore,



Constitutive laws in liquid-fluidized beds 381

Combination φ0 c (cm s−1) φmax Amplitude f0 (Hz) Re (vtdsρf/µf)

1 0.57 7.30± 0.15 0.606 0.104 1.4 287
1 0.558 7.95± 0.10 0.603 0.127 1.4 287
1 0.55 8.15± 0.10 0.598 0.126 1.4 287

2 0.548 5.60± 0.10 0.566 0.052 1.03 82
2 0.540 5.95± 0.05 0.563 0.061 1.00 82
2 0.538 5.90± 0.10 0.564 0.066 1.06 82
2 0.528 6.05± 0.20 0.555 0.062 1.07 82

3 0.545 4.96± 0.04 0.570 0.07 1.00 192
3 0.540 5.00± 0.05 0.564 0.064 1.05 192
3 0.535 5.25± 0.07 0.565 0.074 1.10 192
3 0.531 5.30± 0.07 0.561 0.074 1.10 192

4 0.527 5.95± 0.05 0.555 0.087 1.6 182
4 0.519 6.00± 0.05 0.551 0.094 1.8 182
4 0.512 6.15± 0.10 0.546 0.11 1.5 182

5 0.504 4.50± 0.04 0.522 0.045 1.3 54
5 0.499 4.60± 0.10 0.519 0.054 1.2 54

6 0.549 4.70± 0.15 0.575 0.082 1.1 125
6 0.549 4.30± 0.10 0.576 0.065 1.55 125
6 0.549 3.90± 0.10 0.568 0.035 2.2 125
6 0.534 4.70± 0.10 0.564 0.083 1.25 125
6 0.534 4.60± 0.10 0.565 0.078 1.62 125
6 0.525 4.90± 0.10 0.554 0.084 1.40 125

7 0.488 3.7± 0.1 0.522 0.082 2.1 120
7 0.496 3.8± 0.2 0.528 0.096 1.54 120

8 0.530 3.47± 0.03 0.548 0.077 1 103
8 0.521 3.59± 0.03 0.549 0.082 1 103
8 0.521 3.60± 0.03 0.548 0.077 1 103
8 0.521 3.64± 0.03 0.547 0.080 1.1 103
8 0.512 3.75± 0.10 0.545 0.087 1 103
8 0.511 3.80± 0.05 0.540 0.080 1 103
8 0.507 3.75± 0.05 0.541 0.082 1.25 103

Table 8. Saturated wave characteristics. The experimental uncertainty on φmax and on the wave
amplitude is estimated to be ± 0.003. Within a given combination, the uncertainty on φ0 is ± 0.003,
corresponding to the error on the measure of the height of the bed. When comparing two different
combinations, we must also take into account the error on the total mass of beads and the density
of the beads which leads to a global uncertainty of ± 0.01.

in this case, waves were measured further above the instability threshold φc (see
table 8). When D/ds was larger (typically between 16 and 25, which is the case for
all combinations except combination 7), transverse destabilizations of the plane wave
occurred in earlier stages as the flow rate was increased. It was nonetheless possible
to study the plane waves but the corresponding φ0-range was quite restricted, see
figure 4(b). Plane waves were thus observed and measured in regions closer to the
instability threshold φc.

3.2. Nonlinear evolution of the voidage wave instability

Since the instability is convective in nature as demonstrated by Nicolas et al. (1996),
any perturbation created at the bottom of the bed (‘natural’ noise or controlled
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perturbation) propagates and evolves along the bed. The behaviour of the fluidized
bed was then analysed by investigating the response of the suspension to a localized
and controlled perturbation produced by the forcing distributor (see § 2.2). The spatial
evolution of each forced mode was investigated independently. The synchronized
average method described in § 2.4 was used to separate the forced mode from the
‘natural’ noise. This ‘natural’ noise is indeed always present at the bottom of the bed,
also grows along the height of the bed, and participates in the nonlinear behaviour
of the wave.

For a given mean volume fraction, three types of behaviour were observed depend-
ing upon the forcing frequency f0. For large frequencies above a cutoff frequency, the
wave amplitude decayed along the bed. Figure 5 shows the spatial evolution of such
a stable mode. After a short length of propagation, the amplitude of this mode of
high frequency vanished. It is important to notice that the decay of the stable mode
amplitude is far from being exponential within the range of amplitudes which we
could observe. The propagation of a neutral mode is shown on figure 6. Such a mode
is propagating along the fluidized suspension without change of amplitude or shape.
Finally, figure 7 shows an example of an unstable mode for which the amplitude
is observed to grow and the shape to evolve. Once again, no range of exponential
growth of the amplitude could be observed. The wave evolution is rapidly dominated
by nonlinearities. We will focus on the unstable modes in the following sections of
the paper.

The stability diagram for the combination 7 of table 7 summarizes the three types
of modes and is given in figure 8 where the neutral curve separates two half-planes
in the (φ0, f0) coordinates. The neutral curve fn(φ0) is a straight line. For large
volume fraction, this line crosses the zero-frequency line at a volume fraction which
is close to the value φc corresponding to the onset of the wavy instability (see § 3.1).
Stability diagrams were not collected for the other combinations of table 7 because
the φ0 ranges were very restricted. The present experiment focused on the nonlinear
saturated waves described in the following section.

3.3. Nonlinear saturation of the unstable modes

The shape and amplitude of an unstable mode evolve along the bed. Close to the
moving piston, the forced perturbation is symmetrical (with respect to the mean
volume fraction) in shape, as can be seen on figure 7(a). At a short distance above
the distributor, the wave loses its symmetry and its amplitude grows, as can be seen in
figure 7(b,c). It then saturates as can be seen in figure 7(d,e). It is important to mention
that the saturated amplitude of the mode is an intrinsic quantity. If the amplitude
of the forcing at the bottom of the bed is smaller than the saturated amplitude, the
mode amplitude grows to reach the saturated value. If the amplitude of the forcing
is larger than the saturated amplitude, the mode amplitude decays to reach also the
saturated value.

As can be seen in figure 9, which is typical of many further observations, the
saturated wave can be described as a succession of concentration dips and plateaux
and present a slight asymmetry. A summary of the characteristics of the saturated
waves is presented in table 8 for different combinations of particles, fluids and beds
as well as for different mean volume fractions φ0 and forcing frequencies f0. In order
to increase the measurement accuracy, 100 synchronized averages were performed to
obtain the shape of the saturated waves. It should be mentioned also that for low
forcing frequencies, as the unstable wave grows, a secondary minimum can occur
and become important, see figure 10. It was verified that this secondary minimum
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Figure 5. Spatial evolution of a stable mode. This stable mode was obtained when using combination
7 of particles, fluid and tube, with φ0 = 0.524±0.002 and f0 = 1.22 Hz. The wave shape was measured
at different positions x along the bed and obtained by averaging over 30 time sequences.

was due to the growing 2f0 mode produced by the imperfect moving piston (see
table 5). When 2f0 > fn(φ0), this first harmonic is damped and does not produce any
secondary minimum.

The phase velocity was measured by the digital image processing system, as already
explained in § 2.5. It does not seem to vary much along the bed, but spatio-temporal
diagrams were nonetheless built from images near the top of the fluidized bed, where
we knew for sure that the waves were fully saturated.

3.4. Experimental shape of the waves as a function of experimental parameters

The main characteristics of the saturated waves are presented in table 8. For a
given set of particles, the shape of the saturated wave depends upon the values
of experimental parameters, namely the mean particle concentration φ0, the forcing
frequency f0 and the fluid viscosity µf . It should be stressed that the value of the
mean particle concentration is chosen in a range for which the wavy instability is
observed naturally, i.e. without forcing, within the bed. This concentration is thus
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Figure 6. Spatial evolution of a neutral mode. This neutral mode was obtained when using
combination 1 of particles, fluid and tube, with φ0 = 0.545 ± 0.005 and f0 = 2.6 Hz. The wave
shape was measured at different positions x along the bed and obtained by averaging over 30 time
sequences.

slightly lower than φc, but it has also to be greater than concentrations corresponding
to turbulent regime. Consequently, the φ0-range for which waves can be measured
is limited. Once the mean particle concentration is fixed by adjusting the flow rate,
the forcing frequency f0 is chosen. It has to be below the neutral frequency fn (at
the given φ0) but also above 1

2
fn, to avoid secondary minima as mentioned in the

preceding section. Again, this leads to a limited range of forcing frequency (typically
between 1 Hz and 2 Hz). The viscosity value was only changed by a factor of 3, see
table 3, because the wave amplitudes were very small and difficult to detect for larger
values (see the discussion below).

For a given frequency, changing φ0 does not modify significantly the shape of the
saturated wave. Figure 11 shows the shape of three of the saturated waves obtained
with combination 2, for different φ0 but with the same f0; the wave amplitude
is slightly larger at lower concentrations and its velocity higher (see table 8 for
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Figure 7. Spatial evolution of an unstable mode. This unstable mode was obtained when using
combination 7 of particles, fluid and tube, with φ0 = 0.503 ± 0.002 and f0 = 1.17 Hz. The wave
shape was measured at different positions x along the bed and obtained by averaging over 30 time
sequences.

combination 3). Conversely, for a given mean particle concentration, changing the
forcing frequency f0 influences greatly the wave shape. As the frequency increases, the
amplitude and wave velocity decrease, the wave becomes more and more symmetrical,
and centred around the mean concentration. This can be seen in figure 12 which shows
three of the saturated waves of combination 6, measured for different f0 but with
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Figure 8. Stability diagram obtained for combination 7.
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Figure 9. Saturated wave obtained for combination 7 with φ0 = 0.57± 0.005 and f0 = 1.4 Hz.
This saturated wave was obtained by averaging over 100 time sequences.
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Figure 10. Wave showing a secondary minimum, obtained for combination 7 with
φ0 = 0.49 ± 0.005 and f0 = 1.5 Hz. This saturated wave was obtained by averaging over 150 time
sequences.

the same φ0. It is not surprising because, as f0 → fn, the shape of the wave becomes
closer to that of a neutral mode, that is, by definition, a symmetrical sinusoidal wave
with an amplitude equal to that of the forcing.

Increasing the fluid viscosity (by a factor 3 in the present case) has two main
effects. First, the instability threshold φc is slightly modified (see table 7). Waves
are thus measured in a more dilute bed with fluid b than with fluid a. Secondly, it
reduces the wave amplitude (by a factor 2 in the present case). Figure 13 shows two
waves obtained with fluids a and b, respectively. It should be noticed that the forcing
frequency is different for the two waves but, since it is far from the cutoff frequency
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Figure 11. Influence of the mean particle concentration φ0 on the shape of the saturated wave: (a)
φ0 = 0.548; (b) φ0 = 0.540; (c) φ0 = 0.528. These waves were obtained with combination 2. Only
one period of the wave is shown. The forcing frequency f0 is ≈ 1.1 Hz for the three waves. The
dashed line shows the mean particle concentration φ0.
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Figure 12. Influence of the forcing frequency f0 on the shape of the saturated wave: (a) f0 = 1.1 Hz;
(b) f0 = 1.55 Hz; (c) f0 = 2.2 Hz. These waves were obtained with combination 6. Only one period
of the wave is shown. The mean particle concentration φ0 is 0.549± 0.003 for the three waves. The
dashed line shows the mean particle concentration φ0.

fn(≈ 2 Hz) in both cases, we can assume that the difference of amplitude between
the wave of figure 13(a) and the wave of figure 13(b) is due to the difference in
fluid viscosity only. It should be mentioned that when comparing figures 13(a) and
13(b), only the wave amplitude and c are modified (see table 8), the shape of the
saturated wave remaining similar. It must also be noted that for fluid b, no state of
stable homogeneous fluidization was observed. We also tried to use a more viscous
fluid (a mixture of glycerin and water giving a viscosity µf = 5 ± 0.2 cP). A state of
stable homogeneous fluidization was found in that case (for further details on the
existence of stable fluidization with very viscous fluid or with light particles see Ham
et al. 1990). Above the instability threshold φc, some voidage waves were observed,
but they were of very small amplitude. It was, however, impossible to measure their
shape precisely by averaging over a reasonable number of time sequences, because
the signal to noise ratio was too small.

When changing the set of particles, the overall shape of the waves remains similar
whereas amplitude of the waves and wave velocity c change, as can be seen in table 8.
The remarks made above regarding the dependence of the saturated wave shape on
φ0, f0, and µf are still relevant.
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Figure 13. Influence of the fluid viscosity µf on the shape of the saturated wave: (a) wave of
combination 1: φ0 = 0.57, f0 = 1.4 Hz, µf = 0.9 cP; (b) wave of combination 2: φ0 = 0.54,
f0 = 1 Hz, µf = 3 cP. The dashed line shows the mean particle concentration φ0.

4. Nonlinear analysis of the saturated unstable waves
We now present the two-phase equations we used for the analysis of the experi-

mental data. The fluidized bed is described as a mixture of two continuous phases.
For simplicity, both phases have a Newtonian rheology. The goal of this analysis is
the determination of the solid phase viscosity µs and of the derivative of the solid
pressure dps/dφ from the shape of the saturated wave.

4.1. The saturated wave equation

We chose to use the model of Anderson & Jackson (1967), more recently described in
Anderson, Sundaresan & Jackson (1995), as the basic equations. The fluid phase has
local velocity u(x, t), density ρf , viscosity µf , and pressure pf . The solid phase is also
described as a fluid, with local velocity v(x, t), density ρs, viscosity µs, and pressure ps.
The phases are coupled by a drag force and an added-mass force of the fluid phase
acting on the solid phase. Since the fluid is a liquid rather than a gas, the added mass
term cannot be neglected in the present case.

The full three-dimensional equations are described in Anderson et al. (1995). For
the purpose of the present study, we reduce the dimensionality to one. In that case,
the two-phase equations have the following form:

∂φ

∂t
+

∂

∂x
(φv) = 0, (4.1)

−∂φ
∂t

+
∂

∂x
[(1− φ)u] = 0, (4.2)

φ(ρs + Ĉρf)

(
∂v

∂t
+ v

∂v

∂x

)
− φρf(1 + Ĉ)

(
∂u

∂t
+ u

∂u

∂x

)
+
∂ps

∂x

=
4

3

∂

∂x

(
µs
∂v

∂x

)
+ β(u− v)− φ(ρs − ρf)g, (4.3)

where (4.1) and (4.2) are the mass conservation equations and (4.3) is the momentum
equation for the solid phase. We do not write the momentum equation for the fluid
phase as it is not needed in the following nonlinear analysis of the waves.

Adding and integrating the two continuity equations gives the mean flow rate q
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which is the experimental control parameter:

q = φv + (1− φ)u. (4.4)

The first two terms on the left-hand side of equation (4.3) are inertial terms coming
from the solid and fluid phases, respectively. The third term is the unknown solid
pressure gradient. The parameter Ĉ = C(φ)/(1 − φ) is the reduced added mass
coefficient. The added mass coefficient C(φ) takes the value 1

2
for an isolated particle.

Of course, there is a concentration dependence but it is not fully understood.
The first term on the right-hand side of equation (4.3) is the viscous term, with,

at this stage, an unknown solid viscosity µs. The second term on the right-hand side
represents the drag force of the fluid acting on the solid phase. The coefficient β(φ)
is the drag coefficient that can be deduced from the Richardson–Zaki law:

β(φ) =
(ρs − ρf)g

vt

φ

(1− φ)n−1
, (4.5)

where the two parameters vt and n are determined from the expansion curve of the
fluidized bed (see § 3.1). The last term on the right-hand side of equation (4.3) is the
weight corrected for buoyancy.

Crude estimates of the different terms in equation (4.3) show that the weight
corrected for buoyancy balances drag within a few per cent. Taking dps/dφ ∼
1–100 c.g.s., as suggested by Anderson & Jackson (1969) and Homsy, El-Kaissy
& Didwania (1980), inertial and solid pressure terms can be estimated to be of
comparable size. They represent less than 10% of the difference between drag and
the weight corrected for buoyancy. Thus, the difference between drag and the weight
corrected for buoyancy roughly equilibrates the solid viscous term.

If we now assume (as observed in the experiments) that a saturated wave travels
in the fluidized bed at a constant velocity c, equations (4.1), (4.3) and (4.4) can be
rewritten in a moving reference frame. The wave is stationary in this new reference
frame with a space coordinate X defined by:

X = x− ct. (4.6)

We also introduce the new velocities u(X) = u(x, t) − c and v(X) = v(x, t) − c and
the volume fraction φ(X) = φ(x, t). Using equations (4.1), (4.4) and (4.3), it is then
possible to eliminate u and v successively and to write a single equation for the volume
fraction φ. In the reference frame attached to the wave, the saturated wave equation
has the form:

4
3
cφ0

d

dX

[
µs(φ)

dφ

dX

1

φ2

]
+ F1(φ) +

[
F2(φ)− dps

dφ

]
dφ

dX
= 0, (4.7)

where

F1(φ) = φρs
g(ρs − ρf)

ρs

[
vt(1− φ0)

n − c(1− φ0/φ)

vt(1− φ)n
− 1

]
, (4.8)

and

F2(φ) = ρfφ(1 + Ĉ(φ))
[vt(1− φ0)

n + c(φ0 − 1)]2

(1− φ)3
+ (ρs + ρfĈ(φ))

(
cφ0

φ

)2

. (4.9)

The function F1(φ) contains the difference between drag and the weight corrected for
buoyancy. F2(φ) groups inertial and added mass terms. The first term in F2 is much
smaller than the second, representing at best 15% of the total.
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Figure 14. A saturated wave period plotted as a function of X. The quantities φ, φmax, φmin, X0,
X1 and X2 introduced in § 4.2 are shown.

4.2. Determination of µs and dps/dφ

The two unknown functions of concentration, µs and dps/dφ, can be determined from
the shape of the wave φ(X) and its first derivative. The integration of equation (4.7)
between two coordinates X1 and X2 such as φ(X1) = φ(X2) = φ (see figure 14) gives:

4φ0c

3φ2

[(
dφ

dX

)
X2

µs(φ(X2))−
(

dφ

dX

)
X1

µs(φ(X1))

]
= −

∫ X2

X1

F1(φ(X)) dX. (4.10)

This equation shows that the difference between the solid viscous stress at X2 and
X1 balances the integral of the difference between drag and the weight corrected for
buoyancy over the same interval.

The solid phase viscosity is thus given by:

µs(φ) =
3

4φ0c

φ2

(dφ/dX)X1
− (dφ/dX)X2

∫ X2

X1

F1(φ(X)) dX. (4.11)

Using this formula, µs(φ) can be computed in the range φmin < φ < φmax for each
measured saturated wave. Once µs(φ) is known, we can differentiate equation (4.7)
to find [F2(φ) − dps/dφ] within the same range of concentration. Thus, our fully
non-linear analysis of the shape of the saturated waves provides a determination of
µs(φ) and dps/dφ (under assumptions concerning C(φ) in order to compute F2(φ)),
which are the two unknown functions of concentration introduced in the two-phase
modelling.

Equation (4.10) requires a good accuracy in the calculation of the first derivative
of φ(X). Despite the precision in the measurement of the shape of the wave provided
by the averaging method, experimental results are too noisy to compute directly the
first derivative of φ(X). Experimental results were therefore fitted by an analytical
periodic function, provided by a nonlinear least-squares fit algorithm implemented
in the MatLab software. As a fitting function we have chosen a periodic quartic
B-spline over 10 subintervals. As an example of many further observations, figure 15
shows the good agreement between the experimental wave and the fitted curve. All
the results presented in the next sections were obtained using the fitted analytical
function.



Constitutive laws in liquid-fluidized beds 391

φ

0.60

0.55

0.50

0.45
0 1 2 3 4

Time (s)

0.65

Figure 15. Example of a saturated wave fitted by a B-spline function. The saturated wave was
obtained for combination 1 with φ0 = 0.57 ± 0.005 and f0 = 1.4 Hz. The dashed line is the
experimental result and the solid line is the fitting B-spline function.

5. Determination of the solid phase viscosity µs
In this section, we present the results concerning the solid viscosity µs(φ). For

each of the measured saturated waves, we used formula (4.11) to compute µs(φ). We
hereafter study the influence of experimental parameters on µs(φ).

5.1. Influence of φ0 and f0 on µs

Figure 16(a,b) shows the function µs(φ) for waves shown in figures 11 and 12. For
waves of figure 11, only the mean particle concentration φ0 was changed, the wave
frequency being roughly constant. Conversely, φ0 was fixed and the forcing frequency
f0 was varied for waves of figure 12.

The solid viscosity µs(φ) is found to be an increasing function of the particle
concentration φ. The solid viscosity increases strongly as φ approaches φmax. It is
therefore more convenient to plot 1/µs as a function of φ. This is done in figure 16(c,d )
which shows the same results as in figure 16(a,b). The solid viscosity seems to vary as
φ−1, which was not obvious in figure 16(a,b) showing µs against φ. Note also the plot
of 1/µs against φ has the useful side effect of making the larger error bars at high φ
appear smaller, because the relative error was not so large.

The solid viscosity does not seem to vary significantly with the mean particle
concentration φ0, as can be seen on figure 16(a), at least for the limited range of φ0

in which voidage waves were measurable. Differences for ‘low’ concentration between
the wave at φ0 = 0.528 (circle in figure 16a,c) and the two others are displayed more
clearly when we plot 1/µs as a function of φ, see figure 16(c), but they are still within
the large error bars. In the other cases studied, for example waves of combination 1
and 3 (see table 8), the differences have been also observed to be small and within
error bars.

The solid viscosity does not seem to vary significantly with f0, in the range of
frequencies examined. For waves of figure 16(b,d ), the two curves for f = 1.1 Hz
and f = 1.55 Hz are different, but it is not significant because of the large error
bars involved. However, as can be seen in figure 16(d ), the slope difference is much
larger for the quasi-neutral mode at f = 2.2 Hz, but the data are still within the
error bars of the two other curves. Concerning this last curve, we can wonder if we
really measured a saturated wave as, when we approach the cutoff frequency fn, the
time (and thus the distance covered in the bed) taken by the wave to saturate should
increase strongly. It is therefore possible that this saturated state was not reached in
our bed of limited height. This could explain why results for this quasi-neutral mode
are slightly different.
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Figure 16. Influence of the mean particle concentration φ0 and of the forcing frequency f0 on µs. (a)
µs plotted against φ for combination 2, at f0 = 1 Hz; 4, φ0 = 0.548; �, φ0 = 0.540; e, φ0 = 0.528.
(b) µs plotted against φ for combination 6, at φ0 = 0.549; �, f0 = 1.1 Hz; 4, f0 = 1.55 Hz; e,
f0 = 2.2 Hz. (c) 1/µs as a function of φ, same curves as in (a). (d ) 1/µs as a function of φ, same
curves as in (b).

The fact that the solid viscosity does not seem to vary with frequency supports the
modelling of the stresses of the solid phase by a Newtonian viscous fluid without any
elastic component of stress.

5.2. Influence of fluid viscosity on µs

We now consider the influence of the fluid viscosity µf on µs(φ). The fluid viscosity
µf has been increased by a factor 3 from combination 1 to combination 2. It must
be stressed that the φ-range ‘probed’ in the present experiments, that is the typical
interval [φmin, φmax] for which µs can be computed owing to equation (4.11), is not
the same for waves of combinations 1 and 2. As already mentioned, the instability
threshold φc for fluid b is slightly smaller than that for fluid a. Therefore, the mean
particle concentrations φ0 for which saturated waves can be measured, are smaller
for fluid b (see table 8). The interval [φmin, φmax] being roughly centred around φ0, this
results in a shift along the φ-axis between curves showing 1/µs(φ) for viscous fluid
b and for fluid a, see figure 17(a). It is then difficult to compare directly the solid
viscosity obtained in each case and to draw conclusions from the apparent difference
between the two families of curves.
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Figure 17. Influence of the fluid viscosity µf on µs. (a) 1/µs plotted against φ; (b) 1/µs plotted
against φ − φc; e, φ0 = 0.548; �, φ0 = 0.538: combination 2 with µf = 3 cP and φc = 0.560. �,
φ0 = 0.558; 4, φ0 = 0.55: combination 1 with µf = 0.9 cP and φc = 0.578.

If we now plot 1/µs as a function of φ − φc instead of φ, all curves collapse
into a single curve, as can be seen in figure 17(b). It then becomes clear that the
solid viscosity does not scale with the fluid viscosity. The differences between the two
families of curves in figure 17(a) can be interpreted as a shift of our measurement
zone resulting from the shift in φc caused by the change in fluid viscosity. The collapse
obtained when plotting 1/µs as a function of φ− φc means that the bed rheological
behaviour, as far as µs is concerned, is controlled at a given φ by the distance to the
instability threshold.

5.3. Influence of D/ds on µs

In this section, we compare the solid viscosity for waves of combinations 6 and 7. Only
the bed to particle diameter ratio D/ds differs from combination 6 to combination 7,
see table 8. The resulting curves are presented in figure 18. Once again, the φ-ranges
for which µs(φ) is computed are not the same for waves of combinations 6, 7 and
the resulting shift along the φ-axis is large, see figure 18(a). This shift is not only
due to the change in threshold φc (see table 7), but also to the fact that waves were
measured ‘further’ above the instability threshold for combination 7 (as mentioned
in § 3.1). This latter point is not corrected if we plot 1/µs as a function of φ − φc
and a significant shift between curves of combination 7 and curves of combination
6 remains. Therefore, we must plot 1/µs as a function of φ − φ0 for the shift to
disappear, as can be seen in figure 18(b).

It must be emphasized that for all combinations, excepted combination 7, aspect
ratio D/ds was between 17 and 25 so that waves were measured near φc. The case of
combination 7 is thus rather particular but important because it makes more obvious
the relevance of cancelling shifts along the φ-axis before comparing the values of
µs(φ) for different combinations. However, it could also mean that for combination 7,
the ratio D/ds is too small and that our results are strongly influenced by wall effects.

5.4. Scaling law for µs

It remains for us to consider the influence of particle characteristics on µs(φ). By
comparing combinations 3 and 8, we can study the influence of the particle diameter
ds on µs(φ). By comparing combinations 2 and 3, we can study the influence of particle



394 P. Duru, M. Nicolas, E. J. Hinch and É. Guazzelli
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Figure 18. Influence of the bed to particle ratio D/ds on µs. (a) 1/µs plotted against φ; (b) 1/µs
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�, φ0 = 0.535; e, φ0 = 0.545: combination 3 with dsvt = 1.7 c.g.s. and φc = 0.555. �, φ0 = 0.530;
4, φ0 = 0.521: combination 8 with dsvt = 0.9 c.g.s. and φc = 0.544. (b) 1/µs plotted against φ−φc;
�, φ0 = 0.535; e, φ0 = 0.545: combination 3 with ρsvt = 36 c.g.s. and φc = 0.555. 4, φ0 = 0.548;
�, φ0 = 0.538: combination 2 with ρsvt = 83 c.g.s. and φc = 0.560.

density ρs on µs(φ). The difficulty is that the terminal velocity vt also changes when
ρs and/or ds are changed. For example, for combinations 2 and 3, vt is decreased by
a factor of 50% while ρs is decreased by a factor of 60%.

We can see in figure 19(a) that, for a similar φ-range (which is ensured by plotting
1/µs as a function of φ − φc), µs(φ) is increased when dsvt is increased for a given
particle density ρs. Similarly, in figure 19(b), we can see that µs(φ) is increased when
ρsvt is increased for a given particle size ds.

Several combinations of the parameters of the bed can be constructed with the di-
mensions of viscosity. We have plotted µs made dimensionless by ρsdsvt in figure 20(a)
and by ρfdsvt in figure 20(b). A good collapse into a single curve is obtained in both
cases. Unfortunately, large experimental error-bars do not allow us to discriminate
between these two scalings even though the scatter of the data seems smaller in
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figure 20(a). In the same way, scaling µs by (ρs − ρf)dsvt or (ρsρf)
1/2dsvt would also

provide similar good collapses.
To try to distinguish between these different possible scaling, we can refer to

rheological measurements of stress in fluidized bed (for a good review, see Schügerl
1971). Effective viscosities measured in suspensions fluidized by air or a liquid are
about the same size. This leads us to feel inclined towards a scaling involving the
solid density via ρs or the difference ρs − ρf rather than the fluid density ρf alone.

As a conclusion of this section, it should be stressed that the interpretation of
our data was complicated by shifts along the φ-axis between curves corresponding
to different combinations owing to fluid viscosity effects (see § 5.2) or confinement
effects (see § 5.3). We resolved to correct these effects first, and then to compare curves
giving 1/µs(φ). The solid viscosity seems to vary as φ−1 and to diverge for values of
concentration between φc + 0.02 and φc + 0.04, see figure 20(a), which corresponds
roughly to a random loose packing of the bed. In the limited range of f0, φ0 and µf
studied, we propose finally the best linear fit displayed in figure 20(a) as a scaling law
for µs:

µs(φ) ≈ 0.18
ρsdsvt

φrlp − φ. (5.1)

The best linear fit gives the prefactor 0.18 and the value φrlp ≈ φc + 0.025 for
which µs diverges which can be considered as a random loose-packing concentration.
Unfortunately, φrlp is not a well-defined physical quantity.

This scaling works for the results obtained with all combinations except combi-
nation 7. To take into account this last set of results, we should have introduced a
dependence of the results with φ0. It is therefore a pity that the φ0-range probed for
other combinations was so small that it was not possible to detect an hypothetical
discrepancy between curves giving µs when φ0 was varied. It would have then val-
idated another kind of more complex scaling, involving φ0. However, as we have
already mentioned, it is also possible that results obtained for set 7 are affected too
strongly by wall friction and thus are not relevant.
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Figure 21. (a) [dps/dφ− F2(φ)] as a function of φ for the wave of combination 2 with φ0 = 0.538;
(b) F2(φ), computed with C = 1

2
, for the wave of combination 2 with φ0 = 0.538.

6. Determination of the solid pressure derivative dps/dφ

The present nonlinear analysis of the saturated waves also provides some insight
concerning dps/dφ. As explained in § 4.2, we can compute [dps/dφ−F2(φ)] for values
of φ in the interval [φmin, φmax]. A typical curve is shown in figure 21(a). The quantity
[dps/dφ − F2(φ)] is first constant for a large range of φ but, as φ approaches φmax,
the slope abruptly becomes negative and [dps/dφ − F2(φ)] decreases strongly as φ
increases, when 0.55 < φ < 0.564 = φmax. This can also be seen owing to the following
calculation. Multiplying equation (4.7) by µs(φ)×(dφ/dX)×1/φ2 and then integrating
from XM

1 to XM
2 (see figure 14) leads to:∫ XM

2

XM
1

µs(φ)

[
F2(φ)− dps

dφ

](
dφ

dX

1

φ

)2

dX = 0, (6.1)

which proves that [dps/dφ− F2(φ)] must change its sign. The experimental curve of
figure 21(a) indeed shows that the sign of this expression is first positive and then
becomes negative. We can also see that for a perfectly symmetrical wave, we would
have obtained F2(φ) = dps/dφ, see equation (4.7), which means that the solid pressure
gradient would compensate exactly the inertial terms in this hypothetical case. The
slight asymmetry of the measured wave therefore means that dps/dφ is not exactly
equal to F2(φ) at all φ.

It is possible to compute dps/dφ by simply adding F2(φ) to [dps/dφ − F2(φ)].
Calculations have been made taking C(φ) = 1

2
. A typical curve for F2(φ) is shown in

figure 21(b).

6.1. Influence of φ0 on dps/dφ

Figure 22(a) shows dps/dφ for three waves of combinations 2, shown in figure 11.
Only the mean particle concentration φ0 differs from one wave to another. For each
curve, we encounter the same behaviour as in figure 21(a): dps/dφ is roughly constant
for a large range of φ before decreasing when concentrations near φmax are reached.
The value of dps/dφ in the constant part is approximately the same for each curve.
The quantity dps/dφ begins to decrease for φ = 0.53 when φ0 = 0.528 (circles on
figure 22a), whereas it begins to decrease for φ = 0.55 when φ0 = 0.548 (diamonds
on 22a). This small shift along the φ-axis is meaningful because it is not within
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Figure 22. Influence of the mean particle concentration φ0 on dps/dφ: (a) dps/dφ for combination
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Figure 23. Influence of the forcing frequency f0 on dps/dφ: dps/dφ for combination 6 as a
function of φ. e, f0 = 1.1 Hz; �, f0 = 1.55 Hz; �, f0 = 2.2 Hz.

errors bars. This shift disappears if we now plot dps/dφ as a function of φ− φ0, see
figure 22(b). Owing to the relatively small φ0-range probed by our experiments, we
were not able to confirm this result by measuring saturated waves and thus dps/dφ
for mean particle concentrations lower than 0.528 which could have made the shift
along the φ-axis greater. It is important to repeat that no noticeable differences were
found in µs(φ) for different φ0, see figure 16(a).

6.2. Influence of f0 on dps/dφ

Figure 23 shows dps/dφ for waves shown in figure 12. Only the forcing frequency
f0 differs from one wave to another. For the waves measured at f0 = 1.1 Hz and
f0 = 1.55 Hz (circles and diamonds, respectively, in figure 23), the two curves are
similar, with a decrease of dps/dφ when φ approaches φmax. For the wave measured
at f0 = 2.2 Hz (square in figure 23), the data differ slightly from those of the two
other curves. We have already suggested in § 5.1 that it could be due to the fact that
the corresponding wave was not fully saturated when it was measured.
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6.3. Influence of µf on dps/dφ

Figure 24(a) shows dps/dφ for waves of combinations 1 and 2. Only the fluid
viscosity µf differs from combination 1 to combination 2. Each curve presents a
decrease of dps/dφ when φ approaches φmax. The value of dps/dφ in the constant
part is approximately the same for each curve.

To compare the results obtained with fluid a with those obtained with fluid b,
we have the same problem as that raised while dealing with the influence of µf on
µs(φ): the intervals [φmin, φmax] differ with the fluid viscosity. Waves were obtained in
a relatively more dilute bed with viscous fluid b and their amplitudes were half of
those obtained with fluid a. Nonetheless, we have seen in § 5.2 that plotting µs(φ) as
a function of φ−φc instead of φ (see figure 17), was sufficient to obtain a collapse of
curves into a single one, showing that the apparent differences were mainly due to the
influence of the fluid viscosity µf on the instability threshold φc (φc for combination
2 is lower than φc for combination 1).

However, in the present case, because we have seen in § 6.1 that there was a small
influence of φ0 on dps/dφ, we decided to plot dps/dφ as a function of φ− φ0 rather
than φ−φc, see figure 24(b). Notice that plotting dps/dφ as a function of φ−φc would
have given the same kind of plot, regarding the relative position of each family of
curves because waves were measured roughly at the same distance from the instability
threshold φc in combinations 1 and 2. In fact, using φ− φ0 instead of φ− φc brings
changes only regarding the relative position of curves of the same combination. In
figure 24(b) showing dps/dφ as a function of φ − φ0, only a small offset along the
φ-axis nonetheless remains, which means that the change in fluid viscosity also brings
a change in the amplitude of the waves.

6.4. Influence of D/ds on dps/dφ

We now plot dps/dφ for combinations 6 and 7. Only the bed to particle diameter
ratio D/ds differs in combinations 6 and 7. Figure 25(a) shows dps/dφ as a function
of φ. The origin of the shift along the φ-axis between curves computed from waves
of combination 6 and curves computed from waves of combination 7 has already
been explained in § 5.3. The value of the constant part of function dps/dφ is roughly
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Figure 26. Influence of the characteristics of the beads on dps/dφ: (a) dps/dφ as a function of
φ − φ0; 4, φ0 = 0.535; �, φ0 = 0.545: combination 3 with dsvt = 1.7 c.g.s.; �, φ0 = 0.530; e,
φ0 = 0.521: combination 8 with dsvt = 0.9 c.g.s. (b) dps/dφ as a function of φ− φ0; 4, φ0 = 0.535;
�, φ0 = 0.545: combination 3 with ρsvt = 36 c.g.s.; �, φ0 = 0.558; e, φ0 = 0.550: combination 1
with ρsvt = 88 c.g.s.

the same for all curves. We obtain a good collapse into a single curve when plotting
dps/dφ as a function of φ− φ0, see figure 25(b).

6.5. Scaling laws for dps/dφ

Now it remains to study the influence of particle characteristics on dps/dφ. Fig-
ure 26(a) shows curves obtained with waves of combinations 3 and 8. The quantity
dps/dφ is plotted as a function of φ − φ0. It is clear that the value of the constant
part of dps/dφ is greater when dsvt is larger. In the same way, in figure 26(b), which
shows curves obtained with waves of combination 1 and 3, we see that this value is
greater when ρsvt is larger.

We thus plotted dps/dφ made dimensionless by ρsv
2
t on figure 27(a) and by ρfv

2
t

on figure 27(b). These two graphs show that dps/dφ seems to scale with ρsv
2
t or ρfv

2
t .

Because of the scatter of the data, it is not possible to discriminate between these two
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scalings. In the same way, scaling µs by (ρs− ρf)v2
t would also provide a similar good

collapse. In the limited range of f0, φ0 and µf studied, we can therefore propose the
following scaling laws for dps/dφ, for most of the φ:

dps/dφ ≈ 0.2ρsv
2
t , or dps/dφ ≈ 0.7ρfv

2
t . (6.2)

7. Discussion
By forming long-time averages synchronized with periodic forcing applied at the

base of the fluidized bed, we have been able to observe the growth up the bed of
one-dimensional voidage waves to their saturated finite amplitude. These saturated
waves have a well-defined shape, with flat peaks of high particle concentrations and
narrow troughs of low concentrations. Their variation with frequency and average
particle concentration has been reported in § 3.4. These observations are all available
to benchmark future new theories and computer simulations.

We have chosen to interpret the observations of the saturated voidage waves in
terms of the simplest two-phase model of fluidized beds. We have thus measured
the viscosity and pressure of the solid phase and found how they vary with particle
concentration. It must be pointed out that these measurements were made over a
limited range of parameters and only for saturated finite-amplitude one-dimensional
voidage waves. It remains to be seen if they are applicable to a wider class, for
instance three-dimensional flows.

Results for the viscosity of the solid phase, µs(φ), were reported in § 5. The viscosity
was found not to depend on the frequency of the periodic forcing, which means that
the stresses should be characterized by a constant Newtonian viscosity rather than
an elasticity or a more complex rheology. The solid phase viscosity was further found
to depend little on the viscosity of the suspending fluid µf , the liquid flow rate q
or equivalently the average particle concentration φ0, and the diameter of the tube
D (except for combination 7 where the tube was narrow and for which wall-friction
may have an effect). We found that the variation of the solid phase viscosity on
the density ρs, diameter ds and terminal velocity vt of the particles and on the local
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particle concentration could be approximated by the expression:

µs(φ) ≈ 0.18
ρsdsvt

φrlp − φ. (7.1)

This scaling law applies to the limited range of concentration in our experiments,
φ > 0.5, and indeed we would expect the solid phase viscosity µs to vanish as the
concentration of the particles tends to zero. The evidence for the use of the particle
density ρs in this expression instead of the density of the fluid ρf is not conclusive.
We must recall here that our experiments are for liquid-fluidized beds with particles
and liquid of similar density. In gas-fluidized beds, there would be a considerable
difference between expression (7.1) and using the gas density ρf in place of the particle
density ρs, with the latter option yielding more sensible values. We should also note
here that the particle Reynolds number varies in our experiments over the range
20–200. We have not detected any simple variation with the Reynolds number, other
than that used in the expression for the terminal velocity of an isolated particle vt, but
we certainly would expect a different behaviour at low particle Reynolds numbers.

The rapid increase in the solid phase viscosity as the concentration approaches
the packing value φrlp explains the characteristic shape of the saturated voidage
waves. When the particle concentration is equal to its mean value φ0, there is
an exact balance between the drag on the particles and their weight. At higher
concentrations, the drag wins and at lower concentration the weight wins, with an
approximately linear variation of the imbalance with concentration over the small
range of concentrations in our waves. It is the viscous stresses which principally
equilibrate these slight imbalances between the weight and the drag. The same size
of imbalance is equilibrated over a longer lengthscale at the high viscosity of the
higher concentrations compared with the shorter lengthscale at the low viscosity of
the lower concentrations; hence, the characteristic shape of the saturated voidage
waves occurs with wide flat peaks of high concentrations and narrow troughs of low
concentrations.

From our expression for the solid phase viscosity in a fluidized bed, we can also
make a simple order-of-magnitude estimate of the wavelength of the saturated voidage
waves. We equate the imbalance between the weight and the drag (ρs − ρf)g∆φ with
the viscous term in the equation of motion µsvt(2π/λ)

2, where ∆φ is the amplitude
of the concentration variations and λ is the wavelength. Substituting our expression
for the solid phase viscosity and the high-Reynolds-number estimate for the terminal
velocity v2

t ≈ 0.8(ρs − ρf)gds/ρf , we obtain:

λ ≈ 2.5 ds
∆φ

√
ρs

ρf
. (7.2)

The wavelength is expected to be a large multiple of particle diameter and to be
slightly longer for heavier particles, as qualitatively observed in table 8. It should
not depend upon frequency and be shorter for larger-amplitude waves (not clearly
observed in table 8 owing to the short ranges of forcing frequency and amplitude).
It is possible that this prediction of our simple order-of-magnitude estimate will be
significantly modified by a more careful solution of the governing equation.

The solid phase pressure along with the inertial terms in the governing equation
are small compared with the imbalances between the drag and the weight. Hence,
the asymmetry in the form of the saturated voidage wave, for which they alone are
responsible, is small. It was therefore more difficult to obtain accurate measurements
of the solid phase pressure. Thus, while it appears that dps/dφ is constant over most
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of the range of concentrations, the precise form at the highest concentrations remains
unclear for our experiments. There is of course the possibility near to the maximum
concentration that solid–solid contacts are forming a continuous network which
would produce stresses not described properly by a solid phase pressure depending
only on the particle concentration. While the smallness of the stabilizing pressure and
destabilizing inertial terms is inconvenient experimentally, their smallness leads to a
useful simplification in a theoretical study, in which the shape of the wave is first
determined ignoring these small terms and then afterwards the saturated amplitude is
found from the integral balance (6.1) between the stabilizing and destabilizing effects.

Experimentally, we found in § 6 that the solid phase pressure did not depend on
the frequency of the forcing. This means that a solid phase pressure varying with
the particle concentration is a well-defined material property of a fluidized bed; at
least, in the restricted range of our experiments. We also found that the solid phase
pressure, like the solid phase viscosity, varied little with the viscosity of the liquid µf ,
the average particle concentration φ0, and the diameter of the bed (except for the
very narrow bed in combination 7). The variation with the density ρs, diameter ds,
and terminal velocity vt of the particles seems to be described by the expression:

dps/dφ ≈ 0.7ρfv
2
t , or dps/dφ ≈ 0.2ρsv

2
t , (7.3)

over a range of most of the concentrations, with large negative values at the highest
concentrations. Figure 27 does, however, display a large variation around the value
0.7, with values 0.5 and 0.9 suiting certain results better. It is unclear whether there
is a systematic trend, say with the particle Reynolds number, between the different
experiments which we have not detected, or whether the differences are just a reflection
of the large experimental uncertainty in determining this small quantity. With the
large variation between our results for the solid phase pressure, the choice between
the alternative expressions dps/dφ ≈ 0.7ρfv

2
t and dps/dφ ≈ 0.2ρsv

2
t remains open.

However, a strong dependence of the stabilizing term with ρs was observed by Ham
et al. (1990).

Our experimental finding that dps/dφ is a positive constant for most concentrations
before decreasing sharply to negative values at the highest concentrations is very
different from all the expressions which have been proposed before in theoretical
studies, see table 1. The previously proposed expressions have the pressure increasing
monotonically, and mostly increasing sharply at the highest concentrations. As a
consequence, our slightly asymmetric one-dimensional wave has a higher slope of
concentrations when increasing in time compared with when decreasing, whereas
previous theoretical studies had the opposite asymmetry (see for example Anderson
et al. 1995). The traditional justification of these increasing expressions has been a
consideration of the stability of the fluidized bed. Fluidized beds are more stable at
higher concentrations†. In the competition between the stabilizing effects of pressure
and destabilizing effects of inertia, it was therefore natural to expect the pressure to
increase strongly at high concentrations. This argument for the pressure overlooked
the behaviour of the destabilizing inertial terms. In order to explain the greater stability
of concentrated beds, when the pressure term dps/dφ is constant as we have found,
we must observe that the inertial terms can decrease as the concentration increases.

† Of course, at very high concentrations, the particles are in continuous contact, and under these
conditions the particle pressure cannot be related to the local value of the concentration but instead
is determined globally by the need to avoid further compaction of the bed.
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This decrease accompanies the decrease in the kinematic wave speed vtφ0n(1−φ0)
n−1

at higher concentrations.

As we have discussed above, the pressure term dps/dφ might be either 0.7ρfv
2
t

or 0.2ρsv
2
t . If the correct expression is the former, then the stabilizing pressure term

would be proportional to the density of the fluid ρf while the destabilizing inertial
term is proportional to the density of the particle ρs (plus an added mass term
proportional to ρf) but with a smaller coefficient. In such circumstances we would
speculate that there is a minimum density of the particles, around 1.5ρf for n = 3, for
the destabilization to beat the stabilization at any concentration, i.e. fluidized beds of
light particles would be stable.

In conclusion, we can say that while the simplest two-phase model of a fluidized bed
might be misconceived from a theoretical point of view because simple expressions
for the closures should not exist, it would appear that this simplest model is quite
satisfactory for describing the one-dimensional voidage waves in the limited range
of parameters that we have studied. It remains to be tested experimentally in more
general flows, where for example an important role might be played by the large
fluctuations in the bed which were averaged out by the sampling technique for the
saturated wave.
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Schügerl, K. 1971 Rheological behavior of fluidized systems. In Fluidization (ed. J. F. Davidson
& D. Harrison), chap. 6. Academic.


